97超碰碰碰_91热播_91国产免费视频_91视频合集_国产精品白丝jk白祙_国产精品久免费的黄网站

您現(xiàn)在所在的位置:首頁 >關于奇酷 > 行業(yè)動態(tài) > 鄭州_Python培訓代碼實現(xiàn)人臉檢測

鄭州_Python培訓代碼實現(xiàn)人臉檢測

來源:奇酷教育 發(fā)表于:

  這篇文章主要介紹怎樣用Python培訓實現(xiàn)人臉檢測。人臉檢測是人臉識別的基礎。人臉檢測的目的是識別出照片里的人臉并定位面部特征點,人

  這篇文章主要介紹怎樣用Python培訓實現(xiàn)人臉檢測。人臉檢測是人臉識別的基礎。人臉檢測的目的是識別出照片里的人臉并定位面部特征點,人臉識別是在人臉檢測的基礎上進一步告訴你這個人是誰。
  本文的人臉檢測基于dlib,dlib依賴Boost和cmake,所以首先需要安裝這些包,以Ubuntu為例:
  1.$ sudo apt-get install build-essential cmake
  2.
       3.$ sudo apt-get install libgtk-3-dev
  
       4.$ sudo apt-get install libboost-all-dev
       5.
  我們的程序中還用到numpy,opencv,所以也需要安裝這些庫:
  $ pip install numpy
  $ pip install scipy
  $ pip install opencv-python
  $ pip install dlib
  人臉檢測基于事先訓練好的模型數(shù)據(jù),從這里可以下到模型數(shù)據(jù)
  http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
  下載到本地路徑后解壓,記下解壓后的文件路徑,程序中會用到。
  dlib的人臉特征點
  上面下載的模型數(shù)據(jù)是用來估計人臉上68個特征點(x, y)的坐標位置,這68個坐標點的位置如下圖所示:
  我們的程序將包含兩個步驟:
  第一步,在照片中檢測人臉的區(qū)域
  第二部,在檢測到的人臉區(qū)域中,進一步檢測器官(眼睛、鼻子、嘴巴、下巴、眉毛)
  人臉檢測代碼
  我們先來定義幾個工具函數(shù):
  def rect_to_bb(rect):
  x = rect.left()
  y = rect.top()
  w = rect.right() - x
  h = rect.bottom() - y
  return (x, y, w, h)
  這個函數(shù)里的rect是dlib臉部區(qū)域檢測的輸出。這里將rect轉換成一個序列,序列的內容是矩形區(qū)域的邊界信息。
  def shape_to_np(shape, dtype="int"):
  coords = np.zeros((68, 2), dtype=dtype)
  for i in range(0, 68):
  coords[i] = (shape.part(i).x, shape.part(i).y)
  return coords
  這個函數(shù)里的shape是dlib臉部特征檢測的輸出,一個shape里包含了前面說到的臉部特征的68個點。這個函數(shù)將shape轉換成Numpy array,為方便后續(xù)處理。
  def  resize(image, width=1200):
  r = width * 1.0 / image.shape[1]
  dim = (width, int(image.shape[0] * r))
  resized = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)
  return resized
  這個函數(shù)里的image就是我們要檢測的圖片。在人臉檢測程序的最后,我們會顯示檢測的結果圖片來驗證,這里做resize是為了避免圖片過大,超出屏幕范圍。
  接下來,開始我們的主程序部分
  import sys import numpy as np
  import dlib import cv2
  if len(sys.argv) < 2:
  print "Usage: %s <image file>" % sys.argv[0]
  sys.exit(1)
  image_file = sys.argv[1]
  detector = dlib.get_frontal_face_detector()
  predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
  我們從sys.argv[1]參數(shù)中讀取要檢測人臉的圖片,接下來初始化人臉區(qū)域檢測的detector和人臉特征檢測的predictor。shape_predictor中的參數(shù)就是我們之前解壓后的文件的路徑。
  image = cv2.imread(image_file)
  image = resize(image, width=1200)
  gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
  rects = detector(gray, 1)
  在檢測特征區(qū)域前,我們先要檢測人臉區(qū)域。這段代碼調用opencv加載圖片,resize到合適的大小,轉成灰度圖,最后用detector檢測臉部區(qū)域。因為一張照片可能包含多張臉,所以這里得到的是一個包含多張臉的信息的數(shù)組rects。
  for (i, rect) in enumerate(rects):
  shape = predictor(gray, rect)
  shape = shape_to_np(shape)
  (x, y, w, h) = rect_to_bb(rect)
  cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)
  cv2.putText(image, "Face #{}".format(i + 1), (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
  for (x, y) in shape:
  cv2.circle(image, (x, y), 2, (0, 0, 255), -1)
  cv2.imshow("Output", image)
  cv2.waitKey(0)
  對于每一張檢測到的臉,我們進一步檢測臉部的特征(鼻子、眼睛、眉毛等)。對于臉部區(qū)域,我們用綠色的框在照片上標出;對于臉部特征,我們用紅色的點標出來。
  最后我們把加了檢測標識的照片顯示出來,waitKey(0)表示按任意鍵可退出程序。
  以上是我們程序的全部
  測試
  接下來是令人興奮的時刻,檢驗我們結果的時刻到來了。
  下面是原圖
  下面是程序識別的結果
  可以看到臉部區(qū)域被綠色的長方形框起來了,臉上的特征(鼻子,眼睛等)被紅色點點標識出來了。
  
主站蜘蛛池模板: 成人午夜视频在线 | 美女脱了内裤张开腿让男人添 | 亚洲人成精品久久久久 | 国产成 人 综合 亚洲绿色 | 国产91刮伦脏话对白 | 好紧好爽好深再快点av在线 | 青青青青久久久久国产的 | 午夜精品久久久久久久久 | 欧美一区二区三区成人片在线 | 网友偷自拍原创区 | 欧美日韩国产一区二区三区欧 | av中文字幕潮喷人妻系列 | 免费观看性欧美一级 | 午夜网站在线观看 | 97在线观看视频 | 特黄视频免费看 | 女女互揉吃奶揉到高潮视频 | 亚洲免费视频在线观看 | 色成人综合网 | 免费黄色大片网站 | 自拍视频在线观看视频精品 | 久草视频在线资源 | 在线免费观看www视频 | 久久久久久毛片免费观看 | 成人精品在线视频 | 国产在线观看色 | 一级做a爱过程免费视频时看 | 国产午夜视频在线观看网站 | 亚洲精品无码永久中文字幕 | 久草在在线视频 | 国产成人亚洲精品老王 | 国产大片黄在线看免费 | 国产肉丝袜视频在线观看 | 午夜在线观看免费观看大全 | a毛片免费看 | 在线观看亚洲成人 | 国产日韩欧美久久久 | 久久青青成人亚洲精品 | 无码人妻久久一区二区三区app | 亚洲色偷拍区另类无码专区 | 亚洲精品无码久久久久久 |